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0.1 Complementarity Formulation for American Options

The di¤erence between European and American options is that American options can be
exercised early. As stated before, this, together with the absence of arbitrage opportuni-
ties, imposes certain relations between the prices of American and European options.
In the following, we will examine the case of American puts on stocks that do not pay

dividends. The results we obtain and the methodology we develop can be extended to
options on stocks paying a constant dividend yield, or paying discrete dividends. Recall
that the case of American calls on stocks paying no dividends is trivial; the option will
never be exercised early; hence, its value must be equal to that of the European call with
same maturity and strike price.
In the following, we will use p(t;K), P (t;K) to denote the value of a European and

American put option with strike price K and maturity t, respectively. We have already
established the following:1

P (t; S) > p(t; S)
P (t; S) > max(K � S; 0)
P (t; 0) = K

p(t; 0) = Ke�r(T�t)

lim
S!1

p(t; S) = 0

We will accept without further ado that p(t; S) is continuous with respect to S.
Let us analyze the two extremes of S.
If S ever becomes 0, it will never change. In this case, both the European and American

puts will be exercised for sure. The European option can only be exercised at maturity,
thus p(t; 0) will be the time-t discounted value of the K dollars that will be received at
time T . An American put holder has no reason not to exercise immediately, as any delay
would mean that interest that could have been earned on the strike price K will be lost,
while the payo¤ will never increase above K. Hence, the time-0 value of the American
put will be K.
If S becomes very large, the value of European puts will decrease toward 0. This

is because large stock prices make it unlikely that prices will fall under K. The price
p(0; S) will never be 0, however. If we assume that the volatility of the stock is non-zero,
then there is always a non-zero probability that the stock price will be less than K at
expiration. Since P (t; S) > p(t; S), we conclude that P (t; S) > 0.

1We did this directly, or we asked the reader to establish the corresponding formulas by analogy to
those for puts.
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Let us now consider the instant payo¤ of an exercised American option max(K�S; 0).
If S = 0, then p(t; 0) = K = max(K � S; 0), i.e. the price of the put lies on the graph
of the instant payo¤ (and the option is exercised early). For very large S, however, we
have that p(t; S) > max(K � S; 0) = 0, i.e. the price of the put lies above the graph
of the instant payo¤ (and the option is not exercised early). These insights allow us to
conclude that there must be a point (stock price) Sf (t) where the value of the American
put "breaks free" from the graph of the instant payo¤ function max(K � S; 0).2
Since the value of the American put never becomes 0, the graph of p(t; S) can never

intersect the graph of max(K � S; 0) in the region S > K. Thus we must have that
Sf (t) 2 (0; K).
For values of 0 6 S 6 Sf (t) the American put will be exercised early; for S > Sf (t),

the respective put will not be exercised. We call the value Sf (t) the frontier point of the
early exercise region. The graph f(t; St(t)) j t 6 Tg represents the early exercise frontier
of the American put.

0.1.1 The Black-Scholes Equation for American Options

Given a European payo¤ with value V (t; S), we formed the portfolio

P = V ��S;

where �=@V
@S
over an in�nitesimal period of time (t; t + dt). In e¤ect, we delta-hedged

our payo¤. This choice eliminates all randomness in the change of V over the respective
interval:

dP =

�
@V

@t
+
1

2
�2S2

@2V

@S2

�
dt:

A simple arbitrage argument convinced us that dP must be equal to the money that
could have been earned if we invested the value of the portfolio in the money market
account dP = rPdt.
But what happens in the case of an American payo¤? Clearly, the di¤erence must lie

in the possibility of early exercise. This, in turn, will have an impact on our arbitrage
argument.
Let us assume that dP < rPdt. This relationship states that the return on the portfolio

is less than what could be earned on the money market account. Such a relationship can
not hold in the case of a European option, as nobody would be willing to pay P for the
portfolio just to earn less than the same amount P would have earned on the money
market account. This will depress the price of the portfolio containing the European
instrument so that the equality is reestablished. If early exercise is possible, however,

2Remember that the value of the American put can never decrease under max(S � K; 0). This is
because the American option can be exercised early. As opposed to this, the value of a European option
can be less that the value of the instant payo¤ (can you think of a simple example?).
It could be possible, of course, that the function p(t; S) "breaks away" and returns several times from

the graph of the instant payo¤, and then "hits" it - but never crosses it! - again. We ignore this possibility
here.
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then the inequality can hold without implying arbitrage. If the holder would pass on the
option, he could not sell it for P, but he can just cash in the option by exercising it. After
exercising the option, the holder can then invest in the money market account.
If dP = rPdt we have the same situation as for European options. The holder of the

option will earn the same over the in�nitesimal interval whether he invests the money in
the portfolio, or in the money market account. Hence he will not exercise early, since he
might still earn more money on the option in the future.
If dP > rPdt, then one has no reason to exercise the option, as the holder can

earn more on the portfolio that investing the value of the portfolio in the money market
account. Any investor can borrow money from the money market account and invest it in
the portfolio (i.e. buy the portfolio). At the end of the in�nitesimal interval the investor
liquidates the portfolio, and repays the debt to the money market account (with interest
included). The investor is then left with a sure pro�t of dP � rPdt > 0. This is an
arbitrage opportunity, which we exclude by assumption.
We conclude that in the absence of arbitrage, then, we must have that dP 6 rPdt.
Continuing with the derivation of the Black-Scholes equation exactly as before, we

obtain that the following di¤erential inequality must hold:

@V

@t
+
1

2
�2S2

@2V

@S2
+ rS

@V

@S
� rV 6 0:

0.1.2 Black-Scholes Di¤erential Inequality for American Puts

Keeping in mind that we are talking about American puts, we can state the following:

(a) In case of early exercise, i.e. if S 6 Sf (t), we must have�
P (t; S) = K � S = max(K � S; 0)
@P
@t
+ 1

2
�2S2 @

2P
@S2

+ rS @P
@S
� rV < 0 ;

and

(b) In case early exercise is not optimal, i.e. if S > Sf (t), we must have�
P (t; S) > max(K � S; 0)
@P
@t
+ 1

2
�2S2 @

2P
@S2

+ rS @P
@S
� rP = 0 :

In the early exercise region, the value of the put is given by the instantaneous payo¤
function. In the no early exercise region the solution is given by the solution to the regular
Black-Scholes equation. The problem is that we can not specify a priori the position of
the early exercise frontier, i.e. we can not specify function Sf : [0; T ] ! [0; K]. This
means that we must simultaneously �nd the value of P and determine the early exercise
frontier. Such problems are called free-boundary problems.
The additional conditions that must be imposed in order to make the solution unique

are as follows:
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(a) Condition at expiration: P (T; S) = max(K � S; 0);

(b) Boundary condition 1: P (t; 0) = K;

(c) Boundary condition 2: limS!1 P (t; S) = 0;

(d) Value at frontier: P (t; Sf (t)) = K � Sf (t);

(e) Slope at frontier: @P
@S
(t; Sf (t)) = �1:3

0.1.3 Coordinate and Function Changes

As before, we perform the substitutions48><>:
S = Kex

t = T � 1
1
2
�2
�

u(� ; x) = e
1
2
(k�1)x+ 1

4
(k+1)2� P (t;S)

K

:

in the Black-Scholes di¤erential inequality (remember that k = r
1
2
�2
).

The inequality P (t; S) > max(K � S; 0) now becomes

u(� ; x) > g(� ; x) = e 14 (k+1)2� max(e 12 (k�1)x � e 12 (k+1)x; 0):

Our earlier conclusions must be restated in terms of the new variables and functions:

(a) In case of early exercise, i.e. if x 6 xf (t), we must have�
u(� ; x) = g(� ; x)
@u
@t
> @2u

@t2
:

(b) In case early exercise is not optimal, i.e. if x > xf (t), we must have�
u(� ; x) > g(� ; x)
@u
@t
= @2u

@t2
:

The transformed conditions that must be imposed in order to make the solution unique
are as follows:

(a) Initial condition: u(0; x) = g(0; x) = max(e
1
2
(k+1)x � e 12 (k�1)x; 0);

(b) Boundary condition 1: limx!�1 u(� ; x) = g(� ; x);

3This condition states that the two branches of function p(t; S) connect smoothly at S = Sf ; both the
function value and the �rst derivative is continuous. This is known as the smooth pasting condition. We
will accept this condition as a fact.

4Note that we performed both function changes simultaneously, skipping the intermediate step.
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(c) Boundary condition 2: limx!1 u(� ; x) = 0;

We have not provided the conditions at the early exercise frontier; as we will see shortly,
these will not be needed explicitly. Can you determine the form of these conditions given
the variable and function changes that we undertook?
As written, these inequalities are di¢ cult to solve directly, primarily because we do not

know where the frontier is (i.e. we do not know the value of xf). We can, however, rewrite
these conditions so that the position of the frontier becomes implicit. This formulation,
known as the linear complementarity form, is as follows:8><>:

�
@u
@t
� @2u

@t2

�
(u(� ; x)� g(� ; x)) = 0

@u
@t
� @2u

@t2
> 0

u(� ; x)� g(� ; x) > 0
:

Of course, we still have to impose the initial and the boundary conditions, but we do
not have to know the position of the frontier anymore. Instead, we will just impose that
both u(� ; x) and @u

@x
(� ; x) are continuous.

We will accept without further proof that the linear complementarity problem is equiv-
alent with the original formulation, i.e. it accepts a unique solution identical to that of
the original problem.
Note that once we have a solution for u(� ; x), we can always �nd the position of

the free boundary (same as the early exercise frontier). To see this, let us �x the time
variable to � �, and let us allow x to vary between �1 and +1. As we start from
very small values, the value of u(� �; x) will be equal to g(� �; x), i.e. the option will
be exercised early. Before we reach the frontier, there will be points to the right of the
current point x that also have this property. The frontier point corresponds to the highest
value of x for which the equality still holds. In other words, u(� �; xf ) = g(� �; xf ), but
x > xf ) u(� �; xf ) > g(� �; xf ). This is because the frontier point is the one where P (t; S)
breaks away from the value of the instant payo¤ function, and the same property holds
for the transformed function u(� ; x).
The frontier point can be determined approximately even if the solution is only known

at the discrete nodes of a grid.

0.2 Numerical Valuation of American Puts

0.2.1 Finite Di¤erences

As before, we �rst divide the interval [xmin; xmax] into an integer number of subintervals
of length �x; let Nx = xmax�xmin

�x
. Next, we divide the interval [0; �max] into an integer

number of subintervals of length �t; let Nt = �max�0
�t

. These two steps fully discretize the
domain. We introduce the notation umn = u(m��; xmin + n�x), 0 � m � Nt, 0 � n � Nx,
to denote the values of the unknown function at the points of the resulting mesh.
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0.2.2 The Crank-Nicholson Method

Recall that the error term for the Crank-Nicholson has an error term ofO((�t)2)+O((�x)2),
which makes us prefer it over both the explicit and the fully implicit method. Also, this
method is stable for any value of �.
We can write the following relation for all values 0 < n < Nx and 0 < m < Nt:

�1
2
�um+1n�1 + (1 + �)u

m+1
n � 1

2
�um+1n+1 =

1

2
�umn�1 + (1� �)umn +

1

2
�umn+1| {z }

Zmn

The set of equations given above can be written in matrix form as follows:26666664
1 + � �1

2
� 0 : : : 0 0

�1
2
� 1 + � �1

2
� : : : 0 0

0 �1
2
� 1 + � : : : 0 0

: : : : : : : : : : : : : : : : : :
0 0 0 : : : 1 + � �1

2
�

0 0 0 : : : �1
2
� 1 + �

37777775
| {z }

MCN

Um+1 =

26666664
Zm1
Zm2
Zm3
: : :
ZmNx�2
ZmNx�1

37777775+
1

2
�

26666664
fm+10

0
0
: : :
0

fm+1Nx

37777775
| {z }

bmCN

Here Um denotes the column matrix
�
um1 um2 um3 � � � umNx�1

�T
.

We used the subscript CN to denote matrices related to the Crank-Nicholson method,
so that they are distinguishable from the analogous matrices we de�ned for the fully
implicit method. Since we do not discuss the explicit and fully implicit �nite di¤erence
methods here, we will drop the CN subscript. Hence, the system of equations above will
be represented as MUm+1 = bm. The absence of a superscript on matrix M emphasizes
that M does not depend on time.5

0.2.3 Discretized Linear Complementarity Formulation

Recalling that we denoted by g(� ; x) the value of the instant payo¤ function in the
transformed formulation g(� ; x) = e

1
4
(k+1)2� max(e

1
2
(k+1)x � e 12 (k�1)x; 0), we introduce the

notation gmn for e
1
4
(k+1)2�m max(e

1
2
(k+1)xn � e 12 (k�1)xn ; 0), and Gm for the column matrix�

gm1 gm2 gm3 � � � gmNx�1
�T
.

With these notations, we can write the linear complementarity problem�s discrete
version: 8<:

(MUm � bm) � (Um �Gm) = 0
MUm+1 > bm
Um+1 > Gm+1

:

5We note in passing that this property makes it possible to factorize the matrix only once, and then
reuse the factorization at every time step. While this idea is useful for determining the value of European
options, for the problem of American options the issue of factorization does not arise.
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The inequalities in the relations above must be understood component-wise. Note
that the product denoted by � must be interpreted as being performed component-wise
(i.e. row by row).

0.2.4 Successive Over-relaxation

For 0 < n < Nx and 0 < m < Nt, relation

�1
2
�um+1n�1 + (1 + �)u

m+1
n � 1

2
�um+1n+1 = Z

m
n ;

can be rewritten to emphasize the value of um+1n :

um+1n =
1

1 + �

�
Zmn +

1

2
�
�
um+1n�1 + u

m+1
n+1

��
:

Remember that um0 and u
m
Nx
are known for any m > 0; these are the boundary condi-

tions, and they are known.
For reasons that will become apparent shortly, we will solve this system of equations

through iterative methods. Let us denote the values of umn in the k
th iteration by um;kn .

The values um+1;0n will always be set to the values computed for umn in the preceding step.
The following equality is obvious:

um+1;k+1n = um+1;kn + (um+1;k+1n � um+1;kn ):

This equality states the obvious fact that the new approximation umn is just the value
of the old approximation adjusted to re�ect the di¤erence between the new approximation
and the old one. If we had some independent method of estimating the um+1;k+1n �um+1;kn ,
we could use this equality to get updated approximations for um+1n .
We now provide a technique that allows for such corrections; we introduce the various

elements step by step.
We start with the following simple idea:(

ym+1;k+1n = 1
1+�

h
Zmn +

1
2
�
�
um+1;kn�1 + um+1;kn+1

�i
um+1;k+1n = um+1;kn + (ym+1;k+1n � um+1;kn )

:

It can be shown that starting from um+1;0n = umn , u
m+1;k
n will converge to the solution

of the system of equations MUm = bm. Two simple changes, however, can make the
convergence of this scheme faster.
First, we note that we compute um+1;k+1n�1 before we compute um+1;k+1n . If the values

um+1n converge to the true underlying value, then um+1;k+1n�1 will be a better approximation
of um+1n�1 than u

m+1;k
n�1 . But then why not use this more precise value in the computation

of um+1;k+1n ? This leads to the following scheme (we emphasized the changed upper index
by making it bold):(

ym+1;k+1n = 1
1+�

h
Zmn +

1
2
�
�
um+1;k+1n�1 + um+1;kn+1

�i
um+1;k+1n = um+1;kn + (ym+1;k+1n � um+1;kn )

:
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Using um+1;k+1n�1 is advantageous not only because of increased convergence speed, but
also because no additional memory is needed to store the new value; the new value can
just overwrite the old one.
It turns out that it is possible to accelerate the convergence of the process by manip-

ulating the size of the adjustment term. This yields the following scheme:(
ym+1;k+1n = 1

1+�

h
Zmn +

1
2
�
�
um+1;k+1n�1 + um+1;kn+1

�i
um+1;k+1n = um+1;kn + !(ym+1;k+1n � um+1;kn )

;

where ! is a so-called relaxation parameter. Any value of ! between 0 and 2 will guarantee
convergence in the limit; if the value chosen is less than 1, then we talk about "under-
relaxation", if the value chosen is greater than 1, then we talk about "over-relaxation."
For our scheme, over-relaxation speeds up the convergence of the solution.
In practice, we can not achieve convergence of values um+1;k+1n (in fact, nor would we

want to; computing, say, the 20th decimal from the value of an American option is not
relevant, and can even be detrimental if a lot of computing resources are needed). Instead,
we must set up an approximate criterion for convergence.
It is convenient - and simple - to examine the convergence of vector Um+1;k by the

magnitude of the updates to it. The magnitude of the updates can be characterized, for
example, by computing the 2-norm of the update vector:

Um+1;k+1 � Um+1;k
2
=

vuutNx�1X
n=1

(um+1;k+1n � um+1;kn )2:

In practice, one often chooses a small value " > 0, and considers convergence achieved
when

Um+1;k+1 � Um+1;k
2
< ".

Other norms, like the 1-norm or the 1-norm, can be used. These norms lead to the
following two inequalities, respectively:

Um+1;k+1 � Um+1;k
1
=

Nx�1X
n=1

��um+1;k+1n � um+1;kn

�� < ";Um+1;k+1 � Um+1;k1 = max
n=1;Nx�1

��um+1;k+1n � um+1;kn

�� < ":
The method described above solves the equation MUm+1 = bm iteratively, starting

from the guess Um+1;0 = Um. This method is called the method of successive over-
relaxation, and it could have been employed to determine the value of European calls and
puts. However, this is not the problem we must solve.

0.3 Projected Successive Over-relaxation

We must solve the linear complementarity problem. We can do this easily by a very simple
modi�cation to the successive over-relaxation scheme.
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Indeed, an examination of the linear complementarity formulation allows us to write
the following scheme:(

ym+1;k+1n = 1
1+�

h
Zmn +

1
2
�
�
um+1;k+1n�1 + um+1;kn+1

�i
um+1;k+1n = max(um+1;kn + !(ym+1;k+1n � um+1;kn ); gm+1n )

:

If we make abstraction of the presence of the max function and its second argument,
the scheme above is just the successive over-relaxation method which would iteratively
solve the equationMUm+1 = bm. This corresponds to an unexercised (i.e. European) put.
When the price of the European put would "slip" under the value of the instantaneous
payo¤, then the max function intervenes, and pushes the the solution up.
One might think that a simpler solution is possible: solve equationMUm+1 = bm using

any suitable method, but then modify the resulting solution so that if um+1n < gm+1n , then
the solution at the respective point would be replaced by gm+1n . This approach is actually
incorrect, as all values xm+1i depend on each other through the system of equations;
changing any of them in isolation will destroy the solution. This is why the max function
operates on the function values during the iteration, and not after.
Do you know of any method where the new values xm+1i are obtained in isolation,

i.e. they do not depend explicitly on each other? If yes, you can apply the simpli�cation
rejected above to this method.
Formally proving that the scheme of the projected successive over-relaxation converges

to the right solution is non-trivial; we do not attempt it.

0.4 Putting Everything Together

Solving the linear complementarity problem in the transformed coordinates is now possi-
ble. These are the steps one must undertake to �nd a solution:

(a) Set up the linear complementarity problem in terms of the variable and function
changes.

(b) Initialize the solution with the known values derived from the initial condition: u0n =
g0n, 0 6 n 6 Nx.

(c) For each later step m + 1, 0 6 m < Nt, initialize the boundary values um+10 =
gm+10 and um+1Nx

= 0; these will not change (put in other words, their successive
"approximations" will always be the same). Starting with initial guesses um+1;0n = umn ,
use the method of projected successive over-relaxation until the norm of the vector
of updates Um;k+1n � Um;kn falls under a threshold of �.

(d) Once the solution for the transformed problem is available, the variable and function
changes can be undone, and the solution of the original problem can be found. All
the issues identi�ed earlier relating to the non-uniform grid induced in the original
coordinate space (t; S) by the uniform grid in the transformed coordinate space are
still applicable to this problem.

9



(e) If desired, one can �nd the early exercise frontier. Given a �xed m, the early exercise
frontier at time �m will be found between points xn and xn+1 in the transformed grid
which have the property that umn = gmn , and u

m
n+1 > gmn+1. Of course, this does not

fully determine the position of the frontier point, only that it is located within an
interval of length �x. For more precision, a �ner grid can be used. It is also possible
to get a better position of the frontier point if interpolation is used to approximate
the values of function u for values of x between xn and xn+1. The collection of the
discrete frontier points can be used to reconstruct the entire early exercise frontier in
the transformed space. By undoing the transformations, the early exercise frontier
can be determined in the original coordinates (t; S).
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